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1. Introduction 
Haptics is a technology that simulates the 

tactile sensations. It is being utilized not only in 
entertainment fields such as VR but also in 
telemedicine, robot operation, and many other areas. 
Among these, mid-air ultrasonic haptics can create 
tactile sensations without contact by applying the 
acoustic radiation pressure of focused ultrasonic to 
the skin. Due to this feature, it is also being used to 
clarification of tactile principles and sensitivity 
thresholds(1). 

In order to focus mid-air ultrasonic waves, it 
is essential to use beamforming, which changing a 
phase of ultrasonic waves emitted from the 
ultrasonic speakers and moving the focus as desired. 
In existing products, the focus is calculated by 
obtaining the target position information from 
external sensors, such as cameras. In contrast, a 
method of focus control that does not rely on external 
sensors is beamforming by using reinforcement 
learning. Previous research has adopted PPO 
(Proximal Policy Optimization), which is a policy-
based reinforcement learning algorithm. It is 
assumed the phase to a continuous value. However, 
the result is that no policy is found to maximize the 
reward and a unique focus is not obtained (2). 

In this study, phases are considered as discrete 
values ranging from 0 to 360 degree, and the goal is 
to obtain a unique focus for discrete state spaces by 
using value-based reinforcement learning algorithms, 
SARSA and DQN (Deep Q-Network). 

 
2. Reinforce Learning 

Reinforcement learning mimics the human 
decision-making process. The decision maker is 
called the agent, the possible options of the agent are 
actions a, the state s is the result of the actions acting 
on the environment, and the desirability index of the 
actions is called the reward R. The value of taking 
action a in a given state s is referred to as the state-
action value Q, and the table listing these values is 
called the Q-table. In reinforcement learning, high 
value Q is learned to be obtained continuously. In 
this study, the action is the phase difference between 
the sound sources and the state is the sound pressure 
of the actuator. 

There are two types of reinforcement learning 
algorithms: value-based and policy-based. In value-

based methods, Q-learning and SARSA are 
representative algorithms, while in policy-based 
methods, PPO is a typical algorithm. Value-based 
algorithms include Q-learning and SARSA, while 
PPO is an example of a policy-based algorithm. 

On the other hand, in policy-based methods, 
the algorithm learns an optimal policy and improves 
it to enhance the value. In reinforcement learning, it 
is important to balance the search for actions and the 
application of the learning results. We used the ε-
greedy method as the search method. This method 
takes random actions with probability ε and selects 
the best action based on the learned information with 
probability (1-ε). As learning progresses, ε is 
gradually reduced to shift from exploration to 
optimization. 

 
2.1 SARSA 

SARSA is a representative method of value-
based reinforcement learning. The agent takes an 
action 𝑎𝑡  from the current state 𝑠𝑡 , receives a 
reward 𝑅𝑡 , transitions to the next state 𝑠𝑡+1, and 
selects the next action 𝑎𝑡+1, updating the Q-table in 
the process. This sequence of symbols is referred to 
as SARSA. The Q-value update formula for SARSA 
is given in Equation (1).  

 
𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡  

+𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)]    (1) 
 

In the above equation, 𝛼 represents the learning rate 
and indicates the width of the Q-value updates. 𝛾 is 
the discount rate, which is a measure for discounting 
the rewards obtained from a sequence of actions 
following the chosen action. In other words, SARSA 
updates the Q-table values by estimating the future 
rewards received during actions. In actual action 
selection, whether to choose the action with the 
maximum Q-value or to continue exploring is 
determined according to the ε-greedy method. 
 
2.2 DQN 
     DQN is an algorithm that combines Q-
learning with deep learning. The Q-value update 
formula in Q-learning is given in Equation (2). 
 
𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡  
                  +𝛾 max

a
𝑎 𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2) 

 

In Q-learning, updating the Q-table by selecting the 
action with the highest Q-value. It requires  
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computing Q-values for all possible actions, which is 
computationally intensive. DQN approximates these 
Q-values using deep learning. As in the case of 
SARSA, for actual action decisions, the ε-greedy 
method is used to decide whether to choose the 
action with highest Q-value or to continue exploring. 
 
3 Experimental Setup 
     The configuration of the experimental setup is 
shown in Fig. 1. Eight ultrasonic speakers are 
installed in a concentric circle with a radius of 12.7 
mm as actuators. SPL SU1007 (Resonant frequency 
is 40 kHz) is used as ultrasonic speaker. The control 
unit that performs reinforcement learning is a Mini 
PC (Raspberry Pi 4B). Arduino Uno R3 is a 
controller that transmits the phase information to the 
waveform generator IC AD9833. The signal output 
from the waveform generator IC is amplified through 
the amplification circuit to a maximum voltage of 60 
Vpp and applied to the speakers, which then emit 
ultrasonic. 
     The actuators and microphones are positioned 
directly opposite each other, and the center of the 
actuator's circle as the origin of three-dimensional 
space (x, y, z). Microphones are placed at any point 
in the three-dimensional space. The voltage obtained 
from the microphones is used as the reward in 
reinforcement learning. Initially, voltage is applied 
to two speakers to determine the optimal phase 
difference. This process is then repeated for each 
additional speakers, applying voltage to them and 
finding its optimal phase difference, continuing this 
for all speakers. 

 
4. Results 

SARSA and DQN were implemented on the 
Mini PC, and the sound pressure at each focus was 
measured. Prior to implementation, simulations were 
conducted to optimize the learning rate and the decay 
rate of ε. Since the reward setting has a significant 
impact on the learning results, the following three 
reward patterns were tested in the actual system: I. 
Estimate the target voltage based on the number of 
speakers and distance, and use the ratio of the 
obtained voltage to this target voltage as the reward.  

 
II. Use the obtained voltage directly as the reward. 
III. If the obtained voltage is higher than before, 
assign a reward of +200; if it is lower, assign a 
reward of -1. 

Table 1 shows the focal sound pressures 
obtained after learning with SARSA and DQN. The 
focus is set at (x, y, z) = (0, 0, 30). In both cases, the 
highest sound pressure is achieved with reward 
pattern II. The sound pressure distributions at the 
focal plane for SARSA-II and DQN-II at the focal 
plane is measured, and the center of sound pressure 
at the focus can be observed. SARSA is a wider half-
value width of the sound pressure compared to DQN. 
 
5. Conclusion 

     In this study, the phase differences of the 
sound sources were assumed to be discrete states 
ranging from 0 to 360 degrees. A value-based 
reinforcement learning algorithm was used to 
achieve a unique focus. Policy-based algorithms, 
such as PPO, are designed for continuous states and 
are better suited for multivariate problems. Therefore, 
policy-based methods were considered redundant. 

Reward pattern II resulted in the highest sound 
pressure. This is likely because it provided larger 
reward compared to the ratio with the target value. 
Additionally, SARSA achieved higher sound 
pressure compared to DQN, which is suspected to be 
due to DQN's experience replay. Randomly sampling 
experiences from the replay buffer may have led to 
repeated learning of suboptimal sound pressures, 
introducing bias into the exploration process. 
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Table 1  Obtained sound pressure with 

SARSA, DQN algorithms. 

 Sound pressure [Pa] 

 SARSA DQN 

Reward I 3501 2409 

Reward II 4239 3437 

Reward III 2730 1028 

  
Fig. 1  Experimental Setup. 
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