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1. Introduction 

Shear wave elastography (SWE) is a medical 
imaging diagnostic technique to evaluate tissue 
stiffness1). By measuring tissue deformation induced 
by push beam and estimating the shear wave velocity 
from the deformation, the SWE can visualize tissue 
stiffness, making it useful for the early detection of 
liver cancer, which exhibits changes in stiffness due 
to the disease. SWE possesses the advantage of non-
invasiveness and is capable of real-time diagnosis. 
However, its accuracy is dependent on an operator, 
and significant errors in the estimated shear wave 
speeds can occur when a noise component is present 
in the measurement data. Thus, it is imperative to 
employ a technique for noise reduction. 

The noise reduction method using a singular 
value decomposition (SVD) based filter has been 
proposed for the SWE2). However, as the previous 
paper has focused only on the threshold parameter, 
there are other parameters in SVD that should be 
considered, and their optimal values vary depending 
on the data. 

Therefore, this study aims to modify the noise 
reduction filter for SWE by optimizing not only the 
threshold but also the datasets and their number in 
SVD. 
 

2. Methods 

2.1. Noise reduction filter 
2.1.1. Singular value decomposition 

Demene et al. successfully removed clutter 
signals from an ultrafast Doppler datasets by using 
SVD based filter3). In this study, we apply this 
method to the 3D particle velocity of the shear wave 
to remove the noise components. The dataset used in 
this study is a three-dimensional matrix of size 
(𝑛𝑥, 𝑛𝑧, 𝑛𝑡), where 𝑛𝑥, 𝑛𝑧, and 𝑛𝑡 are the number 
of samples in the lateral, depth, and time directions, 
respectively. When this 3D matrix is transformed 
into a Casorati matrix, a Casorati matrix 𝐒 of size 
(𝑛𝑥 × 𝑛𝑡 , 𝑛𝑧)  is obtained. The matrix 𝐒  can be 
decomposed into three matrices using SVD as 
follows: 

𝐒 = 𝐔𝚲 𝐕∗, (1) 
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where 𝐔  and 𝐕  are matrices of sizes (𝑛𝑥 ×
𝑛𝑡 , 𝑛𝑥 × 𝑛𝑡) and (𝑛𝑧, 𝑛𝑧), respectively, * stands for 
the conjugate transpose, and 𝚲 is a diagonal matrix 
of size (𝑛𝑥 × 𝑛𝑧, 𝑛𝑡) with singular values arranged 
in descending order. At this point, shear wave 
components with high spatiotemporal coherence are 
detected as higher singular values, while the noise 
components with low spatiotemporal coherence are 
detected as lower singular values. Therefore, by 
retaining only specific singular values and replacing 
the others with zero, the filtered data 𝐒𝑓  can be 
obtained as follows:  

𝐒𝑓 = 𝐔𝚲𝑓𝐕∗, (2) 
where 𝐒𝑓 is the filtered data and 𝚲𝑓 is the singular 
value matrix with unwanted components removed. 
This is the method of noise removal using SVD. As 
described above, performing SVD requires a two-
dimensional matrix to which SVD is applied and a 
threshold to extract only the shear wave components. 
Moreover, since the shear wave components are 
detected based on the spatiotemporal coherence in 
the depth direction, it is necessary to determine an 
appropriate value that considers both noise removal 
and spatial resolution for the depth size of the dataset 
used in SVD, especially when constructing two-
dimensional Young’s modulus maps or shear wave 
velocity distributions later in the study. 

 
2.1.2. Datasets 

In the previous research4), it was successful to 
obtain shear wave propagation data in arbitrary 
directions using a mask image that removes only 
specific quadrants after performing a 2D Fourier 
transform on 3D shear wave propagation data at each 
depth. In this study, we further adopted a mask image 
that also removes high-frequency components 
considered as noise. By applying this to all depths 
and performing singular value decomposition, we 
designed a filter with the features of an SVD filter, a 
low-pass filter, and a directional filter. Figs. 1(a)-(d) 
show the shear wave propagation image at a certain 
depth, the 2D power spectrum of Fig. 1(a), a mask 
image for removing components propagating to an 
opposite side and noise, and the image obtained by 
applying the mask to Fig. 1(b), respectively. 
 

mailto:m23c1027@ems.u-toyama.ac.jp


2.1.3. Threshold 
In the previous research5), the threshold was 

determined by the point at which the singular value 
curve began to flatten. In this study, by applying the 
approximate linear fitting to the singular value curve, 
the curve was divided into two segments by a 
singular value, and the threshold was set at the order 
of the singular value corresponding to the boundary 
where the angle between the two lines was minimum. 

 
2.3. Numerical simulations 

In this study, the effectiveness of the proposed 
method was evaluated by performing numerical 
simulations. The dataset used for the simulations 
consisted of 3D data simulating the propagation of 
the shear wave using a sine wave with noise 
components. In this study, an initial position is the 
position corresponding to the maximum value at the 
first frame, and the subsequent positions are 
estimated from the shift of the shear wave between 
adjacent frames using the autocorrelation method6). 
and evaluated by a root mean square error (RMSE) 
with the true position. The RMSE is calculated as 
follows: 

𝑅𝑀𝑆𝐸 [%] =

√
1

𝑛𝑓
∑ |𝑥𝑡𝑟𝑢𝑒(𝑖) − 𝑥𝑒𝑠𝑡(𝑖)|2𝑛𝑓

𝑖=1

mean(𝑥𝑡𝑟𝑢𝑒)
, (3)

 

where 𝑥𝑡𝑟𝑢𝑒  and 𝑥𝑒𝑠𝑡  represent the true and 
estimated shear wave positions, respectively, and 𝑛𝑓 
represents the number of frames. In this evaluation, 
following different conditions were compared; three 
filter patterns, four noise levels, and ten patterns of 
sample numbers in the depth direction of the dataset. 
The filters compared were the proposed method, a 
method applying singular value decomposition 
directly to the dataset, and a case without applying 
any filter. Spike noises were added to 5, 10, 25, and 
50% of the pixels in the 2D matrices at each depth, 
respectively. Additionally, the sample numbers in 
the depth direction of the dataset were varied from 5, 
10, 50, 100, and 150 pixels above and below the 
reference depth for comparison. The simulations 

were performed 100 times with different noise 
pattern, and their average were used for comparison. 

 

3. Results 

Figs. 2 (a)-(d) show the results. With 150 
depth samples, the RMSEs for the SVD and 
proposed filters were 2.90% and 2.10% at 5% noise, 
and 105.32% and 5.93% at 50% noise. This indicates 
that the proposed filter is better than the conventional 
SVD filter regardless of the level of the noise 
components. Additionally, at 5 depth samples and 
5% noise, the RMSEs for the SVD and proposed 
filters were 1010.94% and 69.50%, respectively, so 
the proposed filter maintained accuracy with fewer 
depth samples, improving spatial resolution. 

 

4. Conclusion 
In this study, we aimed to modify the noise 

reduction filter for SWE by optimizing not only the 
threshold but also the datasets and their number in 
SVD. As a result, the proposed filter was better than 
the SVD filter in the numerical simulations, and 
spatial resolution was expected to be improved using 
the proposed filter. 
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Fig. 2 The RMSEs at each noise level. (a) 
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Fig. 1 Images of (a) shear wave propagation, 
(b) the 2D power spectrum of (a), (c) a mask 
map for removing components propagating to 
an opposite side and noise, and (d) a 2D power 

spectrum obtained by applying the mask. 
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