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1. Background & Objective 

The deep ocean, a vast and largely unexplored 
frontier, harbors immense economic and scientific 
potential. In the realm of deep-sea mining, air-lift 
pumps 1) (see Figure 1) have emerged as a promising 
method for extracting Rare-Earth Elements (REE) 2). 
Despite proposals for their use, the current 
technology remains immature. Takagi et al. 3) 

conducted experiments and numerical simulations to 
investigate multiphase flow mechanisms within air-
lift pump systems. Sequential monitoring of flow 
patterns, essential for understanding airlift pumps, is 
yet to be developed. This study addresses these 
challenges using ultrasound imaging and machine 
learning 4). 

 

2. Simulation & Verification 

To achieve high accuracy and enable direct 

processing of simulation results, we employ Direct 

Numerical Simulations (DNS). Utilizing the K-Wave 

package in MATLAB, we conduct simulations (see 

Figure 2), demonstrating the interpretation of Radio 

Frequency (RF) data (see Figure 3) and illustrating 

their graphical representation. Result verification is 

conducted to ensure the validity of acquired data. 

The Helmholtz equation is solved to further validate 

our simulation.  

 
Importantly, the concept of subtraction is introduced 

to enhance location and size prediction, a key aspect 

for understanding bubble dynamics.  

 

 

3. Full Waveform Inversion  

Full Waveform Inversion is a well known 
solution for inverse problems. We conducted 
calculation of FWI and have found that FWI is not 
reliable as transducer numbers decrease. Artifacts 
occur frequently. Small particles are hard to be 
distinguished especially when complexed 
surroundings. (see Figure 4) 

Figure 1: Structure of airlift pumps.  

Figure 2: Example of ultrasound propagation. 
 

Figure 3: Example of simulation results of RF data.  
  

Figure 4: FWI reproduction for 512 and 64 transducers 
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4. Machine Learning Techniques 

Machine learning techniques play a crucial role 
in our research. The project evaluates different 
machine learning algorithms, highlighting their pros 
and cons. The impact of datasets and data types on 
training performance is also discussed. We propose a 
balanced combination of a large dataset and 
representative data augmentation techniques to 
enhance model accuracy and robustness. The 
machine learning settings and algorithm structure are 
clearly presented through figures and tables. 
Training results, along with reasons for suboptimal 
accuracy and drawbacks of computer knowledge-
based algorithms, are illustrated and analyzed. 
Despite achieving 70% accuracy using skip connect 
5) and CNN, these methods lack physics-informed 
elements, falling short of our expectations. 
 

5. Postprocessing and natural image dataset 

Introducing a new postprocessing skill using 
subtraction (See Figure 5), we combine it with 
machine learning training results. Before formal 
application, the sensitivity of the subtraction method 
is tested and confirmed applicable for most cases. We 
propose a complete and novel technique for 
postprocessing training results. This section 
introduces additional transducers for postprocessing-
assisted deep learning, surpassing the limitations 
discussed earlier. Based on our innovative methods 
and different transducer numbers, the results 
demonstrate increased accuracy, particularly with 8 
transducers, achieving above 80% accuracy. For 
2&3 bubbles problem, an average accuracy of 95% 
is attained. (See Table 1) 

 
 

Natural image dataset could also be used for 
machine learning training. 6) According to our 
training result, natural image dataset and the 
structure shows good generalization ability. (See 
Figure 6 & Table 2) 

 

 

6. Current & Future Works 

Currently we are working on 3D situations of 
this ultrasound-based detection task. The feature of 
3D spaces leads to the difficulty of building models 
of bubbles and lengthen the simulation time to tens 
of times of 2D cases. The setting of transducers is 
being tried under different pitch size and layout 
considering possible interactions under spatial 
conditions.  

Our process is expected to complete the current 
task by the time of the conference so that we could 
include the contents for 3D cases. 3D cases are rarely 
considered, and it is worthy discussion for possible 
solutions. After current works, future works may 
include more experiments on real-world data, 
addressing irregular bubble shapes, investigating 
gas-liquid-solid 3-phase interactions. 
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Figure 5: Structure of postprocessing.  

Table 1: Accuracy comparison of predictions.  

Gro PrFigure 6: Result of Natural image set training.  

Table 2: Accuracy comparison of datasets.  
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