S₀-like SAW Mode Resonator Based on LiTaO₃/SiO₂/SiC Platform

Yingbo Kang^{1†}, Xinzhi Li¹, Weijian Zhou¹, Jingfu Bao^{1*}, and Ken-ya Hashimoto¹ (¹Univ. Elect. Sci. Technol. China)

1. Introduction

Recently, attention is paid to the S₀-like SAW mode propagating on a LiNbO₃ (LN) thin plate bonded with the SiC supporting substrate¹⁾⁻⁴⁾. The authors also studied the configuration, and pointed out that insertion of SiO₂ between LN and SiC layers is effective to enhance the electromechanical coupling factor $k_{\rm eff}^2$ significantly with little reduction of the phase velocity.^{5),6)}

This paper discusses application of LiTaO₃ (LT) to the S₀-like SAW mode resonator instead of LN for improvement of the temperature stability in trade-off with k_{eff}^2 reduction.

2. Structural Design

Since LT possesses the same crystallographic symmetry, we can use the structural design procedure^{5),6)} established for the LN-based S_0 -like SAW device.

Fig. 1 shows variation of k_{eff}^2 for the S₀ and SH₀ modes on the LT thin plate as a function of the rotation angle α , i.e., for the Euler angle of $[\alpha, -90^\circ, 90^\circ]$. In this calculation, the LT thickness h_{LT} is set at 0.1 wavelength. When α is 28°, k_{eff}^2 of the S₀ Lamb mode reaches its maximum value of 11.62% while k_{eff}^2 of the SH₀ mode is small (1.9%). Although α is fixed at 28° in the following calculation, good S₀ mode suppression is possible by setting a close to 45° with certain reduction of k_{eff}^2 .

Fig. 1 Variation of k_{eff}^2 of S₀ and SH₀ on LT plate (h_{LT} =0.1 wavelength) with α .

Next, the analysis is extended to the case where this LT plate is bonded on the SiC wafer with SiO_2

E-mail:[†]kyb@std.uestc.edu.cn, * baojingfu@uestc.edu.cn

interposer. In the following analysis, IDT metallization ratio is fixed at 0.45.

Fig. 2 shows the variation of k_{eff}^2 and the phase velocity V_p with the SiO₂ thickness h_{SiO2} when $h_{LT}=0.16p_I$, where p_I is the IDT period. In this calculation, Al IDT thickness h_{Al} is set at $0.04p_I$. Although k_{eff}^2 is significantly smaller than the value given in Fig. 1, k_{eff}^2 increases rapidly with h_{SiO2} and mostly saturates to 8.3% with small h_{SiO2} . This is because soft and light SiO₂ isolates the LT plate from the stiff SiC substrate. As a tradeoff, decreases with h_{SiO2} in some extent.

Fig. 2 Variation of k_{eff}^2 and V_{p} with h_{SiO2} .

Note that k_{eff}^2 is also dependent on h_{LT} in addition to h_{SiO2} . **Fig. 3** shows variation of k_{eff}^2 with h_{LT} and h_{SiO2} when $h_{\text{Al}}=0.04p_{\text{I}}$. It is seen that k_{eff}^2 takes a maximum value of 8.3% when $h_{\text{LT}}=0.16p_{\text{I}}$ and $h_{\text{SiO2}}=0.15p_{\text{I}}$ and does not change rapidly with both h_{LT} and h_{SiO2} near the optimal point.

Fig. 3 Variation of k_{eff}^2 with h_{LT} and h_{SiO2} .

Fig. 4 shows the variation of k_{eff}^2 and V_p with h_{AI} when $h_{\text{LT}}=0.16p_1$ and $h_{\text{SiO2}}=0.15p_1$. Like the S₀-like SAW mode resonators on LN, electrode mass-loading gives negative impacts. With an increase in h_{AI} , k_{eff}^2 increases a little and then decreases rapidly. In contrast, V_p decreases monotonically with h_{AI} . When another heavy material like Cu is chosen for the IDT, k_{eff}^2 decreases more rapidly with h_{AI} . Since certain electrode thickness is necessary to make the electrode resistance small, use of Al is the best for this application.

Fig. 4 Variation of variation of k_{eff}^2 and V_{p} with h_{Al} .

Fig. 5 shows variation of temperature coefficient of velocity (TCV) with h_{SiO2} when $h_{LT}=0.16p_1$ and $h_{Al}=0.04p_I$. TCV increases rapidly with h_{SiO2} and almost saturates when $h_{SiO2}=0.04p_I$. temperature coefficient of frequency (TCF) seems quite possible when the thermal expansion coefficient toward the propagation direction of this composite structure.

Fig. 5 Variation of TCV of S_0 -like mode SAW resonator using LT with h_{SiO2} when $h_{LT}=0.16p_1$. For comparison, that of the S_0 -like SAW resonator using LN is also shown.

This means zero TCF, relatively large k_{eff}^2 , and high V_{p} are achievable simultaneously in this configuration.

In the figure, TCV of S₀-like mode SAW resonator on LN⁵⁾ is also shown. Although use of LT gives smaller k_{eff}^2 than that of LN, good TCV makes use of LT attractive.

3. Admittance characteristics

Fig. 6 shows the admittance *Y* and conductance *G* when p_1 =6 µm obtained by the periodic 2D FEM analysis. The main response is seen at around 1 GHz. The cutoff of bulk radiation is circa 1.4 GHz, which is determined by the slow-shear wave velocity in SiC.

Two spurious resonances are seen below the main resonances, and those at 0.5 GHz and 0.6 GHz are due to Rayleigh and SH₀-like SAW modes respectively. These resonances may be suppressed by finely adjusting θ and/or h_{LT} .

Fig. 6 Calculated |Y| and G of designed S₀-like SAW resonator.

6. Conclusion

This paper described the S₀-like SAW mode resonator using the Al-eletrode/LT/SiO₂/SiC structure. It was shown that zero TCF, relatively large k_{eff}^2 , and high V_p are achievable simultaneously in this configuration.

As the next step, the authors will apply the piston mode design to suppression transverse mode resonances.

Acknowledgment

This work was supported in part by the Research Project under Grant A1098531023601318 and in part by the National Natural Science Foundation of China and the China Academy of Engineering Physics under Grant U1430102.

References

- H. Zhou, et al., Proc. IEEE Conf. on MEMS (2022) 10.1109/MEMS51670.2022.9699444.
- 2) P. Liu, et al., Appl. Phys. Lett., 122, (2023) 103502
- 3) H. Xu, et al., IEEE Trans. UFFC, 70 (2023) p. 1157
- 4) L. Zhang, et al., IEEE Trans., 71 (2023) p. 4182
- 5) X. Li, et al, Jpn. J. Appl. Phys., 63 (2024) 02SP91.
- 6) X. Li, et al., Proc. IEEE MTT-S IC-MAM (2024) pp. 165-168.