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1. Introduction 

In the industrial application of ultrasound, 
Langevin-type transducers are utilized across a 
wide range of fields1). Generally, Langevin 
transducers are used by attaching the vibrating 
surface to a water tank surface. In this case, the 
vibrational energy of the ultrasound is transmitted 
not only to the bottom surface of the tank but also 
to the sides, resulting in inefficient energy transfer 
to the acoustic medium. For efficient acoustic 
energy transfer to the acoustic medium and optimal 
design for various applications, it is necessary to 
have an effective method to predict the radiation 
characteristics delivered to the acoustic medium in 
the tank. The finite element method, which is 
widely used for analyzing the acoustic 
characteristics of transducers, has constraints such 
as extensive computation time and the requirement 
for accurate material properties of structures, 
necessitating a more practical analysis method2). 

In this study, to improve the radiation 
characteristics in the acoustic medium of a 
Langevin-type transducer, we propose a model 
where a circular plate of a certain area is attached 
to the radiating surface of the Langevin-type 
ultrasonic transducer. We derive a solution for the 
forced vibration, considering the boundary 
conditions and the radiating surface of the driving 
force, for a Langevin-type transducer attached to 
the center of a circular plate with fixed edges.  
 

2. Theoretical analysis model  

Figure 1 shows the forced vibration model 
for a case where a circular plate is attached to the 
radiating surface of a Langevin-type transducer. A 
Langevin-type transducer with a radiating surface 
of radius 𝑎T is fixed at the center of a thin 
circular plate with a fixed edge and radius a, and 
the driving force 𝐹𝑒𝑗𝜔𝑡 is applied. The 
displacement ξ of the forced vibration for the 
circular plate with fixed edges satisfies the 
following equation of motion3). 

(∇4 − 𝑘4)𝜉 =
3(1−𝜎2)

2𝐸ℎ3 𝐹𝑒𝑗𝜔𝑡.  (1) 

Here  

𝑘4 =
3𝜌(1−𝜎2)

𝐸ℎ2 𝜔2,   (2) 

ρ , σ , E and h are the density, Poisson ratio, 

Young’s modulus and the thickness of the circular 

plate, respectively. F is the amplitude, and ω  is 

the angular frequency of the external force. The 

boundary conditions in this case are as follows. 

𝜉 = 0,
𝑑𝜉

𝑑𝑟
= 0, 𝑎𝑡 𝑟 = 𝑎.  (3) 

Before obtaining the solution of Eq. (1), the 

solution of the free vibration is obtained as follows. 

𝜉 = ∑ Φ𝑚Ξ𝑚𝜀𝑗𝜔𝑚𝑡
𝑚 .  (4) 

Here 𝑦 =
𝑟

𝑎
 and 

Ξm = 𝐽0(𝛼𝑚𝑦) −
𝐽0(𝛼𝑚)

𝐼0(𝛼𝑚)
𝐼0(𝛼𝑚𝑦).  (5) 

The eigenvalues αm  satisfy the following 

equation and are calculated as shown in Table 1. 
𝐽1(𝑘𝑎)

𝐽0(𝑘𝑎)
= −

𝐼1(𝑘𝑎)

𝐼0(𝑘𝑎)
.   (6) 

 

Table. 1 Eigenvalues of Eq. (1) 

m 1 2 3 4 … 

𝑘𝑎 = αm 3.196 6.306 9.439 12.577 … 

 

By applying the eigenvalues to 𝑘 in Eq. (2), the 

natural angular frequencies are obtained as follows. 

𝜔𝑚 =
𝛼𝑚

2

𝑎2

ℎ√𝐸

√3𝜌(1−𝜎2)
.  (7) 

Therefore, the solution for the case when an 

external force 𝐹𝑒𝑗𝜔𝑡  is applied to the circular 

vibrating plate can be expressed as follows 

𝜉 =
1

2ℎ𝜌
∑

𝐴𝑚Ξ𝑚𝜀𝑗𝜔𝑡

𝜔𝑚
2 −𝜔2𝑚 .  (8) 

Here, the coefficient 𝐴𝑚 , representing the force 

 

 
Fig. 1 Vibration model of Langevin ultrasonic 

transducer attached with fixed rim of the circular 

plate. 



distribution of the driving force transferred to the 

circular plate, can be expressed as follows. 

𝐴𝑚 = 2 ∫ 𝐹Ξ𝑚𝑦 𝑑𝑦
𝑥+𝑑𝑥

𝑥
.  (9) 

Here, F represents a force per unit area.  

Regarding the Langevin transducer 

considered in this study, as shown in Fig. 1, the 

region where the driving force acts is assumed to 

be uniformly distributed only within the circle of 

radius 𝑎𝑇. Therefore, the integration range of Eq. (9) 

is from 𝑎𝑇 to 𝑎, and by normalizing with the radius 

𝑎 of the plate, the integration is performed over the 

range from 𝑎𝑇/𝑎 to 1. As a result, the expansion 

coefficient 𝐴𝑚 is obtained as follows. 

𝐴𝑚 =  
2𝐹

𝑎𝛼𝑚
[𝐵 −

𝐼0(𝛼𝑚)

𝐽0(𝛼𝑚)
𝐶],  (10) 

Here 𝐵 = 𝑎1𝐼1 (
𝛼𝑚𝑎𝑇

𝑎
) − 𝑎𝐼1(𝛼𝑚), and  

𝐶 = 𝑎𝑇𝐽1 (
𝛼𝑚𝑎𝑇

𝑎
) − 𝑎𝐽1(𝛼𝑚).  

 

3. Results and discussion  

Using the Eq. (8) derived from theoretical 
analysis, we investigated the vibration 
displacement distribution and radiation 
characteristics of a circular plate with fixed edges 
under forced vibration. The physical properties and 
thickness settings of the circular vibrating plate in 
Fig. 1 are summarized in Table 2. The radius of the 
radiating surface of the Langevin transducer was 
set to 𝑎𝑇=22.5 mm, the driving frequency to 𝑓=50 
kHz, and the acoustic medium was assumed to be 
water. The radius of the circular vibrating plate 
attached to the transducer was set to four different 
values: 𝑎=29.6 mm, 39.5 mm, 49.3 mm, and 59.2 
mm, and calculations were performed for each case.  
 

Table. 2 Thickness and physical properties of circular plate. 

Thickness 

(mm) 

Density 

(kg/m3) 

Poisson 

ratio 

Young’s 

modulus (MPa) 

1.0 7850 0.3 205 

 
The calculated vibration displacement 

distribution of the vibrating plate is shown in Fig. 
2. In the figure, the vertical axis represents the 
vibration amplitude, and the horizontal axis 
represents the radial direction of the circular plate. 
In this study, since we are interested in the shape of 
the vibration, the magnitude of the vibration 
displacement has been normalized. We will only 
consider the vibration modes in the radial direction 
of the plate. This is because the circular vibrating 
plate has a relatively large central area fixed as the 
radiating surface of the Langevin transducer, and 
the boundary around the plate also has fixed 
boundary conditions, making it difficult for 
vibration modes that are not symmetric about the 
central axis to occur. In Fig. 2, the radial direction 

is normalized by the radius of the transducer. The 
area with the red line indicates the region of the 
circular vibrating plate. Observing the vibration 
displacement patterns with varying sizes of the 
vibrating plate, in the range corresponding to the 
transducer's radius, 0<𝑟/𝑎𝑇, a uniform 
displacement is observed due to the constant force 
applied. However, in the region where 𝑟/𝑎𝑇>1, 
different bending vibration patterns are exhibited 
depending on the radius of the circular vibrating 
plate. Examining Fig. 2(a) for the case where the 
plate radius 𝑎=29.6 mm, the difference between the 
radius of the transducer 𝑎𝑇 and the plate is very 
small, approximately 7 mm, resulting in a very 
simple vibration pattern for the plate in its steady 
state. In Fig. 2(b), where the difference between the 
plate radius 𝑎 and the transducer radius 𝑎𝑇 is 
approximately 17 mm, the vibration displacement 
distribution shows a pattern with half-wavelength 
characteristics as the vibrating area of the plate 
increases. In Fig. 2(c) and (d), where the plate area 
is further increased, the vibration distribution 
shows patterns with longer wavelengths as the 
vibrating area increases. 
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(a) a/aT =1.33    (b) a/aT =1.77 

 

(c) a/aT =2.216           (d) a/aT =2.66 

Fig. 2 Normalized vibration displacement 

depending on the radius of circular plated. 
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