Analysis of resonance properties of longitudinal leaky SAW on LiNbO₃/Ca₃TaGa₃Si₂O₁₄ bonded structure

Yuya Kobayashi^{1†}, Masashi Suzuki¹, Shoji Kakio¹, and Noritoshi Kimura² (¹University of Yamanashi; ²Piezo Studio Inc.)

1. Introduction

With the recent developments in mobile communication systems, there is a need for highperformance surface acoustic wave (SAW) devices. Langasite-type crystals, such as La₃GaSiO₁₄ (LGS) and La₃Ga_{5.5}Ta_{0.5}O₁₄, have approximately three times larger electromechanical coupling factor (K^2) than quartz. However, controlling their uniform composition during crystal growth is difficult. Naumenko analyzed a longitudinal leaky SAW (LLSAW) excited by a Cu interdigital transducer (IDT) on a bonded structure of an LGS support substrate and a LiNbO₃ (LN) thin plate; accordingly, the conditions for low attenuation (high *Q*), a phase velocity of 6,200 m/s, and a K^2 value of 14.5% were reported¹⁾.

In our previous study, we focused on a new class of langasite-type crystal with ordered structure, Ca₃TaGa₃Si₂O₁₄ (CTGS), that can be grown as homogeneous crystal. The propagation and resonance properties of a shear-horizontal SAW on CTGS(0°, θ , 90°) with Au- or Al-IDTs were theoretically and experimentally investigated; a K^2 of approximately 1.2% and zero temperature coefficient of frequency (TCF) were thus reported²).

In this study, we analyzed the resonance properties of LLSAW excited by an Al-IDT on a bonded structure of a CTGS support substrate and an LN (0°, θ , 90°) thin plate; this is expected to demonstrate a higher Q because the LLSAW is not coupled with a fast shear wave component.

2. Simulation

Figure 1 shows the analytical model of the finite element method (FEM). The resonance properties of LLSAW on a bonded structure of $LN(0^{\circ} \theta, 90^{\circ})/CTGS(0^{\circ}, 90^{\circ}, 90^{\circ})$ with an infinite period of Al-IDTs with a wavelength $\lambda = 10 \mu m$ and normalized thickness of h_{Al}/λ were analyzed. A material with Q (Q_m) = 600 was set on an LN thin plate with a normalized thickness of h/λ . The Euler angles of the CTGS were set such that the LLSAW phase velocity was the fastest for a single CTGS substrate. A perfectly matched layer was placed at the bottom of the support substrate with a thickness of 10λ .

Figure 2 shows the simulated LLSAW resonance property for LN(0° , 80° , 90°)/CTGS(0° ,

90°, 90°) with $h_{\text{LN}}/\lambda = 0.57$ and $h_{\text{AI}}/\lambda = 0.076$, exhibiting the largest admittance ratio (*AR*). The horizontal axis in Fig. 2 is converted to phase velocity by multiplying the frequency by λ . The properties of LLSAW on LN(90°, 90° ψ)/CTGS(0°, 90°, 90°) are also shown in Fig. 2.

For the conditions of $\theta = 80^{\circ}$, $h_{\text{LN}}/\lambda = 0.57$, and $h_{\text{Al}}/\lambda = 0.076$, an effective K^2 (K^2_{eff}) of 12.3%, AR of 75.7 dB, a resonance Q (Q_r) of 844, and an antiresonance Q (Q_a) of 662 were obtained for the phase velocities of 6,160 and 6,500 m/s at the resonance and antiresonance frequencies, respectively.

Figures 3(a)–3(d) show the simulated resonance properties of LLSAW on LN(0°, θ , 90°)/CTGS(0°, 90°, 90°) for (a) K^2_{eff} , (b) AR, (c) Q_r , and (d) Q_a as a function of θ for $h_{\text{LN}}/\lambda = 0.57$. The parameters of h_{Al}/λ considered are 0.04, 0.06, 0.076, and 0.1.

Fig. 3 Simulated LLSAW properties on LN(0°, θ, 90°)/CTGS(0°, 90°, 90°).

As shown in Fig. 3(a), K^{2}_{eff} showed a maximum value of 15.4% at $\theta = 30^{\circ}$ for $h_{Al}/\lambda = 0.04$, and it decreased with increasing θ , regardless of the Al thin-film thickness. With increasing Al thickness, the angle θ with the maximum K^2_{eff} increased, and the maximum value decreased. However, as shown in Fig. 3(b), AR shows a maximum value of 75.7 dB at $\theta = 80^{\circ}$ for $h_{\rm Al}/\lambda = 0.076$, and it changes more significantly with θ than with Al thicknesses. $Q_{\rm r}$ shows a maximum value of 662 at $\theta = 80^{\circ}$ for $h_{\rm Al}/\lambda =$ 0.076 and varies from 130 to 662 depending on θ , which is a large variation compared to that with other Al thicknesses, as shown in Fig. 3(c). Q_a also exhibits a maximum value of 844 at $\theta = 80^{\circ}$ and varies widely from 244 to 844 depending on θ , as shown in Fig. 3(d).

The resonance properties of LLSAW on the bonded structure of CTGS(0°, 90°, 90°) and an Xcut LN thin plate, that is, the LN(90°, 90°, ψ) thin plate, which is expected to exhibit a larger K^2_{eff} , were also analyzed, as shown in Fig. 2. In this combination, the propagation angles ψ with a high AR were obtained for $h/\lambda = 0.52$ and $h_{Al}/\lambda = 0.06-0.08$.

For $\psi = 29^{\circ}$, K^{2}_{eff} of 17.1%, AR of 54.8 dB, and $Q_{\rm a}$ of 799 were obtained, $Q_{\rm r}$ had a low value of 29.4.

For $\psi = 142^{\circ}$, although Q_a was 829, Q_r had a low value of 150, with K^2_{eff} of 11.3% and AR of 61.1 dB. On the contrary, for $\psi = 112^\circ$, while Q_r was 646, Q_a was 272, with K^{2}_{eff} of 13.9% and *AR* of 67.8 dB.

:h_{Al}/λ=0.04

 $:h_{AI}/\lambda=0.06$

 $:h_{Al}/\lambda = 0.076$

:h_{Al}/λ=0.1

150

:h_{Al}/λ=0.04

:h_{Al}/λ=0.06

:h_{Al}/λ=0.1

150

180

:h_{Al}/λ=0.076

180

120

120

3. Conclusion

The resonance properties of LLSAW on the bonded LN(0°, θ , 90°)/CTGS(0°, 90°, 90°) and LN(90°, 90°, ψ)/CTGS(0°, 90°, 90°) structures were The results showed that several analvzed. combinations of the Euler angle, LN thin-plate thickness, and Al film thickness achieved K^{2}_{eff} values larger than 11% and high values of $Q_{\rm r}$ and/or $Q_{\rm a}$. In the future, we plan to investigate on TCF through experimental studies.

Acknowledgment

This study was supported by the JST Fund program for creating research-based start-ups (Grant Number JPMJSF23CT).

References

- 1) N. F. Naumenko, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 67, 1909 (2020).
- 2) R. Suzuki, M. Suzuki, S. Kakio, and N. Kimura, Jpn. J. Appl. Phys. 62, SJ1022 (2023).