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1. Introduction 

Recently, Transformers have demonstrated 
remarkable success in image super-resolution. 
However, the performance of traditional 
Transformers is limited by using relatively small 
amounts of input information. If the input 
information could be increased, the effectiveness of 
super-resolution must be further improved. Based on 
this idea, the Hybrid Attention Transformer (HAT) 
was developed1) and has achieved promising results. 
Compared to simpler models such as Deep 
Denoising Super Resolution CNN (DDSRCNN)2), 
HAT has much more complex structures and is more 
effective at utilizing input information. In this report, 
we classified ultrasound echo human breast image 
learning data into four categories—benign, 
malignant, normal, and all; then HAT and 
DDSRCNN were respectively trained on these 
categories and for comparison, the results were 
evaluated visually and quantitatively using the peak 
signal-to-noise ratio (PSNR) and the structural 
similarity (SSIM) across different categories. 

2. Methods 

2.1 HAT 

HAT is a transformer-based super-resolution 
model that outperforms traditional transformer-
based models.1) The improvement is achieved by 
combining channel attention and window-based self-
attention, which enhances the utilization of input 
pixel information. Additionally, HAT incorporates 
overlapping cross-attention modules that strengthen 
the interaction between neighboring window 
features, leading to more accurate and detailed image 
reconstruction. 
 
2.2 DDSRCNN 

Used for comparison is DDSRCNN. 
DDSRCNN2 has convolutional and deconvolutional 
layers, which reduces noises while simultaneously 
achieving a high spatial resolution. 

2.3 Human breast data 

Totally, 780 human breast ultrasound images3) 
were used (500 × 500 pixel average, 1 to 5 MHz), 
which were comprised of 437 benign, 210 

 

Fig. 1 Examples of LR input images (left) LRb, (middle) LRm,  

and (right) LRn. 

 
malignant, and 133 normal images. To make the 
ground truth (GT) data, the images were resized to 
256 × 256 pixels at first. Next, the high-resolution 
(HR) images were down-sampled to 128 × 128 
pixels to make low-resolution (LR) image input data 
for HAT; and the LR data were subsequently up-
sampled to 256 × 256 pixels to make LR input data 
for DDSRCNN. The data were classified into 4 
datasets: benign (LRb), malignant (LRm), normal 
(LRn) and all images (LRa), each of which was 
trained and tested on each other. Fig. 1 shows the 
examples of LRb, LRm and LRn, along with their 
corresponding PSNR values. Each dataset was used 
in a ratio of learning, 7.0: evaluation, 1.5: testing, 1.5. 
The hyperparameters were for HAT, the learning rate, 
0.0002 and the number of epochs, 70; and for 
DDSRCNN, the learning rate, 0.0001, the initial 
number of epochs, 300, weight decay, 0.01, and we 
set up a counter with an initial value of 10. If the 
Mean Squared Error (MSE) of the validation data 
does not decrease during the epoch, the counter 
decreases by 1 until it reaches 0; if the MSE 
decreases, the counter is reset to 10. This mechanism 
prevented overfitting. 

3. Results 

     Fig. 2 to Fig. 5 respectively show for the 

benign, malignant, normal, and mixed learning 

models of (upper) HAT and (lower) DDSRCNN the 

examples of resultant images and PSNRs obtained 

for input data of (left) LRb, (center) LRm and (right) 

LRn. As shown, it can be visually confirmed that the 

spatial resolution increases for both models. 

Next, the mean PSNR values of all models and 

the differences between HAT and DDSRCNN are 

summarized in Table I. Regardless the training data, 
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Fig. 2 Images obtained with Benigne (top) HAT and (bottom) 

DDSRCNN models with different test inputs (left) LRb, (center) 

LRm, and (right) LRn. 
 

 
Fig. 3 Images obtained with Malignant models. Specifically, see 

caption of Fig. 2. 
 

 
Fig. 4 Images obtained with Normal models. See Fig. 2. 
 

HAT consistently outperforms DDSRCNN from 

0.66 to 1.47 dB. Although some individual image 

results do not follow the expected order, averagely 

both HAT and DDSRCNN exhibit the more 

improvement in performance as the amount or 

diversity of training data is the larger, i.e., the order, 

Mixed > (≅) Benign > Malignant > Normal model. 

This was observed for all the inputs except for HAT 

with LRm, i.e., the Mixed and Benign models were 

inverted slightly. However, for all the inputs, the 

order of PSNR differences between HAT and 

 
Fig. 5 Images obtained with Mixed model. See Fig. 2. 
 

Table I Mean PSNR values [dB] of all models with respect to 

every input and differences between HAT and DDSRCNN in 

parentheses. 

 
 

Table II Results about SSIM. Specifically, see Table I.  

 
 

DDSRCNN was Normal > Malignant > Benign > 

Mixed, i.e., the inverse of the order of dataset size. 

Thus, HAT outperforms DDSRCNN much even 

when data is less. Moreover, HAT exhibited for all 

the test data a smaller PSNR range across models 

than DDSRCNN (differences: 0.19 vs 0.82, 0.21 vs 

0.77, 0.08 vs 0.54, and 0.18 vs 0.76). These indicated 

that HAT has the much higher capability of learning 

than DDSRCNN and thus, demonstrates the greater 

stability. 

Next, the results of SSIM are similarly 

summarized in Table II, which were similar to those 

of PSNR outcomes and show that HAT performs 

better than DDSRCNN. 

4. Conclusions 

HAT outperforms DDSRCNN in every dataset. 
Although the the performance of both HAT and 
DDSRCNN was the better with increasing the 
number of data or the more diversity of dataset, HAT 
exhibited the greater stability. To perform the more 
precise examination, we’ll change the amount of 
training data by increasing/decreasing data, 
augmentation, etc. 
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