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1. Introduction 

Drug delivery systems (DDS), which aim to 
deliver and concentrate drug to target area in human 
body, has a potential to reduce side effects. We have 
been developing a technique1,2) to actively control 
microbubbles using acoustic radiation force in order 
to apply to DDS. Thus, we aim to reconstruct a shape 
of blood vessel network (BVN) to recognize 
treatment area in advance by processing ultrasound 
images or volumes. Since the size of ultrasound 
volume was limited, we developed a system to 
extend the area of BVNs by combining multiple 
BVN volumes individually extracted ultrasound 
volumes 3). Also, we developed a system to register 
the shape of BVNs between a preoperatively 
constructed ultrasound volume and an 
intraoperatively obtained ultrasound image 4). 

However, since previous methods required 
adjustment manually, there was a limitation in the 
reliability in a shape of reconstructed BVNs. 
Therefore, this study attempts to realize an automatic 
and robust augmentation by introducing a method of 
point cloud registration (PCR) to register between 
multiple BVNs, which replaces the conventional 
connected components to dispersed point cloud. In 
this report, we present our initial attempt to extend 
the BVNs originated ultrasound volumes using PCR. 

 

2. Method 

Fig.1 shows an overview of PCR, which is a 
process of integrating a source point cloud into the 
coordinates of a target point cloud. In the rigid 
registration, the combination between nearest points 
was chosen to maintain the position relationship in 
each point cloud without a deformation, whereas the 
non-rigid registration takes a deformation into 
account. In this study, we adopted three PCR 
methods of Iterative Closest Point (ICP) 5), Random 
Sample Consensus (RANSAC) 6), and Coherent 
Point Drift (CPD) 7), where the former two methods 
are rigid registrations, and the latter one is a non-
rigid registration. 

The method of ICP calculates nearest neighbor 
points between the source and the target to update a 
simultaneous transformation matrix. The method of 

RANSAC is more robust method than ICP, where a 
hypothetical homogeneous transformation matrix is 
obtained considering an average distance between 
corresponding points less than a threshold. The 
method of CPD formulates a likelihood 
maximization of a probabilistic model, where a 
deformed source point cloud is assumed to be 
centroids of a Gaussian mixture model and the 
outlier points are not deformed. 
 

 
Fig.1 Comparison of the process between rigid and non-

rigid registrations. 

 

First, the source and target volumes are 
transformed into the solid and hollow point clouds, 
which are indicated in Fig.2 as a cross-section of 
blood vessel. Fig.3 shows the flowchart of the 
proposed method. We performed the rigid 
registration by directly connecting between 
RANSAC and ICP with the solid point clouds of the 
source and target volumes to obtain the 
homogeneous transformation matrix and the Output 
A. Then, the homogeneous transformation matrix is 
utilized to the non-rigid registration with the hollow 
point clouds of the source and target volumes. 
Finally, CPD conducted to obtain Output B. 

 

 
Fig.2 Comparison of the solid (left) and hollow (right) 

point clouds. 
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Fig.3 Flowchart of the proposed method. 

 

3. Results 

First, we produced an artificial blood vessel 
model (in silico) with Y-shape to simulate the 
proposed PCR. The spacing between the points was 
established to 0.5 mm. Fig.4 shows the position 
relationships of source and target in the initial 
position, output A, and output B. The distance and 
the angle between the source and the target were set 
to 15 mm and 10 degree, respectively.  

 

Fig. 4 Position relationships of source (blue) and target 

(red) of artificial blood vessel model: (a) initial position, 

(b) output A, and (c) output B. 

 

We obtained multiple ultrasound volumes of 
healthy human liver (23 y.o., male) using an 
echography (EPIQ Elite, Philips Inc.) with a three-
dimensional probe (X6-1), where the conditions 
were B-mode gain of 60%, depth of 150 mm, and 
mechanical index of 1.0. While the ultrasound 
volumes were recorded, the global coordinates of the 
probe were acquired using an optical position sensor 
(Polaris, NDI Inc.). The three-dimensional shape of 
the BVN was extracted manually in this procedure. 
Since the voxel spacing in the original volume was 

(x, y, z) = (0.369, 0.316, 0.545) mm, we reduced the 
density in a hollow point cloud 10 times lower than 
a solid point cloud. Fig.5 shows the position 
relationships as the similar combination to Fig.4. 

 

Fig.5 Position relationships of source (blue) and target 

(red) BVNs of human liver (portal vein and hepatic 

vein) : (a) initial position, (b) output A, and (c) output B.. 

 
In both results, although the rigid registration 

performed so that the common structures in the 
source and the target matched, the position 
correspondence was insufficient. In contrast, the 
non-rigid registration deformed to minimize the 
differences between the source and target, where the 
effectiveness of the proposed method was confirmed. 
In the result of human liver, the deformation was 
limited to the points that were commonly contained 
in the source and target, without deforming the 
independently possessing points. 
 

4. Conclusions 

In this study, we proposed a method of non-
rigid PCR and verified the effectiveness by 
comparing with rigid PCR using an artificial model 
and BVNs of human liver. In both results, the source 
point cloud was properly registered to the target 
point cloud with a smooth extension. Since the 
proposed method does not require any manual work, 
we consider to expand these procedures to include 
machine learning. 

 

References 

1) T. Chikaarashi, et al: Jpn. J. Appl. Phys., 61, 
SG1071, 2022. 

2) H. Ushimizu, et al: Jpn. J. Appl. Phys., 57, 
07LF21,  2018. 

3) T. Katai, et al: Proc. IEEE Eng. Med. Biol. Conf., 
5824-5827, 2019. 

4) K. Masuda, et al: Current Med. Imaging, 19, 2023. 
5) P. J. Besl, and N. D. McKay: IEEE Trans. Patt. 

Anal. and Machine Intel., 14, 2, 239-256, 1992. 
6) M. A. Fischler and R. C. Bolles: Comm. Assoc. 

Comput. Machinery, 24, 6, 381-395, 1981. 
7) A. Myronenko, et al: Adv. Neural Info. Process. 

Sys. 19, 1009-1016, 2006.  
 


	ISTSProgramNumber: 
	0: 
	041528377276538686: 2P5-8




