
Estimation of Physical Properties of Si by Laser 

Heterodyne Photothermal Displacement Method and 

Machine Learning 

 

Shota Urano†, Tomoki Harada*, Tetsuo Ikari, and Atsuhiko Fukuyama 

(Faculty of Engineering, Univ. of Miyazaki) 
 

1. Introduction 

The Demand for data storage and information 
processing technologies is increasing toward the 
realization of Society 5.0. As a result, semiconductor 
devices are required to have higher speed and 
functionality, and semiconductors are becoming 
increasingly miniaturized and highly integrated. 
Thus, generated heat in semiconductor devices is 
increased. On the other hand, heat generation due to 
nonradiative recombination is also considered as one 
of the factors. This is a problem because it leads to 
performance degradation and low lifespan of 
semiconductor devices. In order to control the heat 
generation, it is necessary to properly evaluate the 
physical properties related to nonradiative 
recombination of the semiconductor material. We 
have been evaluating semiconductors by using 
piezoelectric photothermal (PPT) method1) to detect 
thermal expansion and thermal waves of a sample 
due to nonradiative recombination of photoexcited 
carriers with high sensitivity. However, the PPT 
method is difficult to evaluate quantitatively because 
the signal intensity varies depending on the 
mounting conditions of the sample and the 
piezoelectric element. Therefore, we developed the 
laser heterodyne photothermal displacement (LH-
PD) method2), which is a nondestructive and 
noncontact method to measure the thermal 
expansion displacement of a sample surface due to 
the heat generation with the nonradiative 
recombination of photoexcited carriers by a 
heterodyne interferometer. Furthermore, time-
resolved measurement of the displacement is 
possible, and the time variation of the displacement 
includes information on physical properties such as 
optical absorption coefficient, thermal diffusivity, 
carrier mobility, and carrier lifetime. Therefore, each 
physical property value can be estimated by fitting 
analysis of the time variation of displacement. 
Theoretical calculations were performed to 
reproduce and fit the time variation of displacement 
using COMSOL Multiphysics®3), which is 
simulation software. However, due to the large 
number of parameters involved, the fitting process 
requires a great deal of time and effort. Therefore, 
the purpose of this study is to develop a rapid 

estimation for the physical property from the time 
variation of the displacements using machine 
learning. 
 
2. Experimental and Theoretical calculation 

Figure 1 shows a schematic diagram of the 
LH-PD method. A semiconductor laser diode (LD) 
with a wavelength of 808 nm was used as the 
excitation light, and a He-Ne laser with a wavelength 
of 632.8 nm was used as the detection light. The 
detection light was split into two optical paths by a 
nonpolarizing beam splitter (NBS). Their frequency 
was modulated by an acoustic optics modulator 
(AOM) with frequencies f1 and f2, respectively. The 
f1 was used as the reference light, and after passing 
through the polarizing beam splitter (PBS), it entered 
the photomultiplier tube (PMT). The f2 is used as the 
probe light, and after passing through the PBS, it is 
reflected on the sample surface. It then merges with 
the reference light to form a beat signal (fb=|f1-f2|). 
The beat signal is converted into an electrical signal 
by PMT and detected. At the same time, 5% of the 
excitation light is extracted by a beam sampler and 
detected by a Si photodiode (PD) as a reference 
signal. In the LH-PD method, the irradiation position 
of the excitation and the detection light can be 
controlled. Hereafter, the distance between the two 
irradiation positions is referred to as the irradiation 
distance. 

Theoretical calculations taken into account the 
generation carriers, diffusion, and nonradiative 
recombination of photoexcited carriers, heat 

Fig.1  Schematic diagram of LH-PD equipment. 
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diffusion, and thermal expansion. In other words, the 
carrier continuity equation, the thermal diffusion 
equation, and the elastic equation were solved to 
reproduce the time variation of the displacement. 
Since these phenomena are axisymmetric with the 
excitation light, a cylindrical coordinate system was 
used to calculate. 
 
3. Machine Learning Methods 

The input data for machine learning were 
generated by substituting random values of four 
physical properties (thermal diffusivity, carrier 
mobility, carrier lifetime, and surface recombination 
velocity) in n-type Si substrate into theoretical 
calculations under two conditions of 0 and 50 µm 
irradiation distance. 2000 data sets ware prepared 
with aforementioned four physical properties and the 
time variation of the displacement. They are divided 
into training data (60%), validation data (20%), and 
test data (20%). A fully connected feedforward 
neural network model was constructed and trained 
using the Keras4) and TensorFlow5) library in Python. 
The input data of neural network model were the 
time variation of displacement and the surface 
recombination velocity, and outputs were one of the 
following: thermal diffusivity, carrier mobility, or 
carrier lifetime. The two physical property values not 
used for the output were entered in the middle of the 
model. A rectified liner unit6) was applied to the 
activation function, and loss was measured by mean 
squared error of the outputs. 

 
4. Result 

Figure 2 shows the relationship between the 
set values and predicted values of (a) thermal 
diffusivity, (b) carrier mobility, and (c) carrier 
lifetime for the test data. The diagonal lines in the 
figure indicate that the set values and predicted 
values are equal, and the more the plotted data is on 
the diagonal line, the higher the estimation accuracy. 
The root mean square error (RMSE) of the thermal 
diffusivity is 0.022 (m2/K) and the coefficient of 
determination (R2) is 0.998. The RMSE of carrier 
mobility is 0.125 (cm2/V・s) and R2 is 0.978. The 
RMSE of carrier lifetime mobility is 0.127 and R2 is 
0.992. The obtained estimation accuracy was 
sufficient for practical evaluation, and the learned 
model enabled property estimation in a few seconds. 
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Fig.2  Prediction results of each property value. 
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