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1. Introduction 

  In the design of phononic crystals (PnCs) 1), many 
studies have focused on maximizing size of the band 
gap (BG) through various optimization methods 
such as topology optimization2), Monte Carlo 
simulations3), and other evolutionary algorithms4). 
On the other hand, "inverse problem approaches" to 
identify materials and structures of PnCs that 
achieves a desired BG frequency and size is difficult 
without prior knowledge on which material 
properties of choices affect predominantly. In recent 
years, with the advancement of artificial intelligence 
technology, new approaches applying machine 
learning are attracting much attention. However, 
simple machine learning can only solve the forward 
problem of predicting the frequency range and size 
of BG from a specific PnCs, whereas the inverse 
problem of determining the PnCs structure and 
materials that yield a specific BG frequency and size 
is a complex black-box optimization problem that 
can often be unsolvable. The relationship between 
the forward and inverse problems of machine 
learning is shown in Fig. 1. In this study, we 
developed a methodology for solving the inverse 
problem using deep learning model to achieve the 
structural inverse design of PnCs that yield a desired 
BG frequency and size.  

 
Fig. 1 Relationship between forward and inverse 
problems in PnCs and BG applying deep learning 
model 
 
2. Data Preparation  
  In this study, we consider two-dimensional PnCs 
with a square lattice consisting of a background 

material and a central material. Figure2 shows a plan 
view of PnCs in which the central material is a 
cylinder and a square pillar 5). 

Fig. 2 Plan view of 2D PnCs with a cylindrical 
(left) and a square pillar (right) embedded in the 
background material 
 
The dispersion properties have been calculated by 
solving the wave equation of the elastic body based 
on the plane wave expansion method. In order to 
confirm the applicability of machine learning, this 
study uses a model equation that can represent elastic 
wave propagation only with transverse waves in a 
solid material without anisotropy. In collecting the 
training data, the elastic modulus, density, filling 
fraction, and shape of the central material were 
varied while the elastic modulus and density of the 
background material were normalized to 1. 
Additionally, to broaden the data range, calculations 
were also performed for structures with the shape 
obtained by combining cylindrical and square pillars, 
as shown in Fig. 3. 

Fig. 3 Combining schemes of the shapes of central 
material in 2D PnCs: addition (left) and 
multiplication (right) 
 
3. Structural Design by Inverse Problem using 
Deep Learning Model 

  We then constructed a deep learning model, and as 
a result of learning, we achieved high performance 
in forward prediction of the BG, with a coefficient of 
determination(R²) of 0.99. Figure4 shows an image 
of the constructed deep learning model. The input 
data are the elastic modulus(𝐶), density(𝜌), filling 
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fraction( 𝑓 ), and structural parameters( 𝑠 ) of the 
central material in the PnCs, and the output data are 
the lower band edge(𝜔!_min) and the size of the 
BG(BG_size). 

 
Fig. 4 Image of the constructed deep learning model 
 
This learned model 𝑔() was then applied for the 
structural inverse design of PnCs. To achieve this, 
the desired 𝜔!_min, BG_size and the squared error 
of the predicted data generated by the deep learning 
model were set as the objective function defined as 
in Eqs.(1) and (2). 

𝑓!"_"#$ = #𝑔(𝐶, 𝜌, 𝑓, 𝑠) − target!"_"#$1
$ (1) 

𝑓%&_%#&' = #𝑔(𝐶, 𝜌, 𝑓, 𝑠) − target%&_%#&'1
$ (2) 

Thus, by setting up an objective function applying 
the learned model called 𝑔(), the problem can be 
regarded as in the framework of mathematical 
optimization. By minimizing each objective function, 
the values one wishes to find can be obtained as the 
solution. This is a multi-objective optimization 
problem using deep learning model, and the inverse 
problem can be solved by using gradient descent 
algorithm 6), group intelligence 7), and evolutionary 
algorithms8) to search for the pareto solution and 
pareto front as illustrated in Fig. 5. 

 
Fig. 5 Concept of multi-objective optimization 

4. Result 

  By applying a genetic algorithm (NSGA-II) to 
solve a multi-objective optimization problem, we 
confirmed that the structural inverse design of PnCs 
has successfully derived the desired outcomes. As a 
result, we could design the desired PnCs for various 
targets of 𝜔!_min and BG_size with error rates as 
low as 0.01%. For instance, when targeting 
𝜔!_min:= 1  and BG_size:= 0.4 , the structural 
inverse design yielded PnCs with 𝜔!_min ≈ 1.005 
and BG_size ≈	0.4023, as shown in Fig. 6. 

 

Fig. 6 Structure and its dispersion obtained by the 
present inverse design algorithm of PnCs 
 

5. Conclusion 

  We solved a multi-objective optimization problem 
by applying a deep learning model to perform the 
structural inverse design of 2D PnCs for obtaining 
desired BG frequency and size. As a result, we 
confirmed that the desired PnCs could be designed 
within an error rate of 0.01% across a wide ranges of 
problem setting. Details of the algorithm as well as 
future perspective of the developed method will be 
given in the presentation. 
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