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1. Introduction 

Elastic devices operating at high frequencies 
have been used for a lot of applications such as a 
filter of wireless telecommunication devices. 
Conventional elastic devices have two-dimensional 
shapes, which lead to the limitations of high 
integration and complex functions. Three-
dimensional (3D) elastic devices are expected to 
overcome these limitations. While there are many 
efforts to realize 3D elastic devices, one of the 
biggest challenges is to make the waveguides 
perpendicular to the substrate due to the dissipative 
nature of elastic waves. 

Higher-order topological phononic crystals, in 
which robust boundary modes appear at lower 
dimensions than bulk, have been attracting attention 
as systems that are immune against scattering.1) 
Previously we have reported the vertically stacked 
systems that are topologically nontrivial. These 
systems have the features of topological hinge states 
perpendicular to the substrate and edge states parallel 
to the substrate based on the layer degree of 
freedom.2,3) Moreover, these are quite receptive to 
fabricate the nanostructures, enabling to make elastic 
wave devices with high integration and complex 
functions as shown in Fig. 1. However, these 
topological hinge states are extended from corner 
states, which gives rise to reflection along the 
vertical direction.  

In this work, we propose a spiral Kagome 
phononic crystal based on higher-order Weyl 
semimetals, which inherently have topological hinge 
states,4,5) aiming to develop an efficient waveguide 
for the vertical propagations. 
 

2. Spirally stacked Kagome phononic crystal 

We construct a tight-binding model of spiral 
Kagome phononic crystal for obtaining a higher-
order Weyl semimetal. Kagome lattice is known for 
a second-order topological insulator,6) when intra-
cell hopping t1 is smaller than inter-cell hopping t2 as 
shown in Fig. 2(a). Each layer is stacked spirally, e.g., 
site A is connected to site B of upper layer and site C 
of lower layer. This spiral hopping t3 has an impact 
on strength of intra-cell hopping. These bonds are 
not parallel to in-plane direction, consequently intra-
cell hopping terms is dependent on the wavenumber 
of z direction kz. To modulate the value of t3, intra-
cell hopping is same strength as inter-cell hopping at 
a certain kz and eigenstates are degenerated, which is 
called a Weyl point. Weyl points divide the Brillouin 
zone into which topological hinge modes appear and 
disappear.  

 The band diagram along kz direction obtained 
by the tight-binding model is shown in Fig. 2(b). 
Each hopping term is as follows: t1 = −1.0, t2 = −1.3 
and t3 = −0.6. Each band oscillates along kz and Weyl 
points appear at wavenumbers marked by red dotted 
lines.  
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Fig. 1  Schematic illustration of the difference 

between a conventional elastic device (left) and a 

vertically stacked 3D elastic device (right). 
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Fig. 2  (a) Schematic illustration of the spiral 

Kagome phononic crystal. Left panel shows top 

view and right panel shows side view. (b) The band 

diagram of the unit cell obtained by tight-binding 

model. The hopping parameter (t1, t2, t3) = (−1.0, 

−1.3, −0.6). Red dotted line depicts the 

wavenumbers where Weyl points emerge. 
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3. Hinge states protected by topology  

Next, we study the supercell with tight binding 
model to verify the existence of topological hinge 
states. The band diagram of 10×10 supercell is 
shown in Fig. 3(a). The hopping parameters are the 
same as those given in the previous section. The 
localization at hinges, which is calculated by the 
existence probability |φ|2, is represented by 
gradations of color. The states concentrating at 
hinges, fixed at zero energy, emerge near kz = ±(π/c), 
while these states are hidden behind bulk states 
around kz = 0. These hinge states are triply 
degenerated, corresponding to number of hinges of 
the triangular supercell.  

To validate that these hinge states are derived 
from the second-order topological feature, we 
investigate the Wannier center, which determines 
whether a model is second-order topological 
insulator in Kagome lattice, along kz direction. The 
Wannier center at each kz is defined as: 

𝑝𝑖(𝑘𝑧) =
1

𝑆
∬ 𝐴𝑖 d𝑘2

𝐶𝐵𝑍
, 

where CBZ stands for cross-sectional surface at kz of 
the Brillouin zone with area S, and Ai is the Berry 

connection with i = x or y. In our system, (px, py) 
takes the discrete values: (0, 𝑎 2√3⁄ )  or 
(0, −𝑎 2√3⁄ ), the former is nontrivial, and the latter 
is trivial. The px value is constant against any kz value, 
therefore we calculate only py value. The y 
coordinate of the Wannier center py with various kz is 
shown in Fig. 3(b). The value definitely turns the 
sign at the dotted lines. These lines clearly 
correspond to the wavenumber where hinge states 
start to appear. This result manifests that hinge states 
obtained by the tight-binding model are originated 
from topological feature of Kagome lattice, being 
robust against bends, disorder, and defects. 

 

4. Conclusion 

We proposed a spiral Kagome phononic 
crystal based on a higher-order topological Weyl 
semimetal to acquire topological hinge states 
propagating without scattering. First, we built a 
tight-binding model of spiral Kagome phononic 
crystal, and it is found that Weyl points appeared 
with appropriate values of hopping terms. Next, we 
constructed the supercell with tight-binding model. 
The result showed that hinge states emerge in the 
limited kz region. Finally, we calculated the Wannier 
center for verifying these hinge states is 
topologically protected. The structure we proposed 
is dependent on kz value, enabling to design 
applications such as waveguides that is selective for 
the incident angles of elastic waves.  
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Fig. 3  (a) The band diagram of 10×10 supercell 

along kz direction. Color bar denotes the 

localization at hinges. (b) The Wannier center 

along kz direction. The Wannier center takes 

the value +𝑎/2√3  in nontrivial state and 

−𝑎/2√3  in trivial state. In each figure, 

dotted lines represent the wavenumbers where 

the Weyl points emerge. 
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